Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 234: 106622, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33965293

RESUMO

Molten salt reactors (MSRs) are gaining support as many countries look for ways to increase power generation and replace aging nuclear energy production facilities. MSRs have inherently safe designs, are scalable in size, can burn transuranic wastes from traditional solid fuel nuclear reactors, can store excess heat in thermal reservoirs for water desalination, and can be used to produce medical isotopes as part of the real-time liquid-fuel recycling process. The ability to remove 135Xe in real time from the fuel improves the power production in an MSR because 135Xe is the most significant neutron-absorbing isotope generated by nuclear fission. Xenon-135, and other radioactive gases, are removed by sparging the fuel with an inert gas while the liquid fuel is recirculated from the reactor inner core through the heat exchangers. Without effective abatement technologies, large amounts of radioactive gas could be released during the sparging process. This work examines the potential impact of radioxenon releases on samplers used by the International Monitoring System (IMS) to detect nuclear explosions. Atmospheric transport simulations from seven hypothetical MSRs on different continents were used to evaluate the holdup time needed before release of radioxenon so IMS samplers would register few detections. Abatement technologies that retain radioxenon isotopes for at least 120 d before their release will be needed to mitigate the impacts from a molten salt breeder reactor used to replace a nuclear power plant. A holdup time of about 150 d is needed to reduce emissions to the average level of current nuclear power plants.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Poluentes Radioativos do Ar/análise , Isótopos , Centrais Nucleares , Reatores Nucleares , Radioisótopos de Xenônio/análise
2.
J Environ Radioact ; 148: 10-5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26093852

RESUMO

BATAN Teknologi (BaTek) operates an isotope production facility in Serpong, Indonesia that supplies (99m)Tc for use in medical procedures. Atmospheric releases of (133)Xe in the production process at BaTek are known to influence the measurements taken at the closest stations of the radionuclide network of the International Monitoring System (IMS). The purpose of the IMS is to detect evidence of nuclear explosions, including atmospheric releases of radionuclides. The major xenon isotopes released from BaTek are also produced in a nuclear explosion, but the isotopic ratios are different. Knowledge of the magnitude of releases from the isotope production facility helps inform analysts trying to decide if a specific measurement result could have originated from a nuclear explosion. A stack monitor deployed at BaTek in 2013 measured releases to the atmosphere for several isotopes. The facility operates on a weekly cycle, and the stack data for June 15-21, 2013 show a release of 1.84 × 10(13) Bq of (133)Xe. Concentrations of (133)Xe in the air are available at the same time from a xenon sampler located 14 km from BaTek. An optimization process using atmospheric transport modeling and the sampler air concentrations produced a release estimate of 1.88 × 10(13) Bq. The same optimization process yielded a release estimate of 1.70 × 10(13) Bq for a different week in 2012. The stack release value and the two optimized estimates are all within 10% of each other. Unpublished production data and the release estimate from June 2013 yield a rough annual release estimate of 8 × 10(14) Bq of (133)Xe in 2014. These multiple lines of evidence cross-validate the stack release estimates and the release estimates based on atmospheric samplers.


Assuntos
Poluentes Radioativos do Ar/análise , Monitoramento de Radiação , Compostos Radiofarmacêuticos/análise , Radioisótopos de Xenônio/análise , Explosões , Indonésia
3.
J Environ Radioact ; 135: 94-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24811887

RESUMO

The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and (133)Xe data from three IMS sampling locations to estimate the annual releases of (133)Xe from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.8 × 10(14) Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 2.2 × 10(16) to 2.4 × 10(16) Bq, estimates for the facility in Indonesia vary from 9.2 × 10(13) to 3.7 × 10(14) Bq and estimates for the facility in Argentina range from 4.5 × 10(12) to 9.5 × 10(12) Bq.


Assuntos
Poluentes Radioativos do Ar/análise , Monitoramento de Radiação/métodos , Radioisótopos de Xenônio/análise , Austrália
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...